skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Green, Rebecca A"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Intrinsic reproductive isolation occurs when genetic differences between populations disrupt the development of hybrid organisms, preventing gene flow and enforcing speciation. While prior studies have examined the genetic origins of hybrid incompatibility, the effects of incompatible factors on development remain poorly understood. Here, we investigate the mechanistic basis of hybrid incompatibility inCaenorhabditisnematodes by capitalizing on the ability ofC. brennerifemales to produce embryos after mating with males from several other species. Contrary to expectations, hybrid incompatibility was evident immediately after fertilization, suggesting that post-fertilization barriers to hybridization originate from physical incompatibility between sperm and oocyte-derived factors rather than from zygotic transcription, which starts after the 4-cell stage. Sperm deliver chromatin, which expands to form a pronucleus, and a pair of centrioles, which form centrosomes that attach to the sperm-derived pronucleus and signal to establish the embryo's anterior-posterior axis. InC. brennerioocytes fertilized withC. eleganssperm, sperm pronuclear expansion was compromised, frequent centrosome detachment was observed, and cortical polarity was disrupted. Live imaging revealed that defective polar body extrusion contributes to defects in mitotic spindle morphology.C. brennerioocytes fertilized withC. remaneiorC. sp. 48sperm showed similar defects, and their severity and frequency increased with phylogenetic distance. Defective expansion of the sperm-derived pronucleus and unreliable polar body extrusion immediately after fertilization generally underlie the inviability of hybrid embryos in this clade. These results indicate that physical mismatches between sperm and oocyte-derived structures may be a primary mechanism of hybrid incompatibility. 
    more » « less